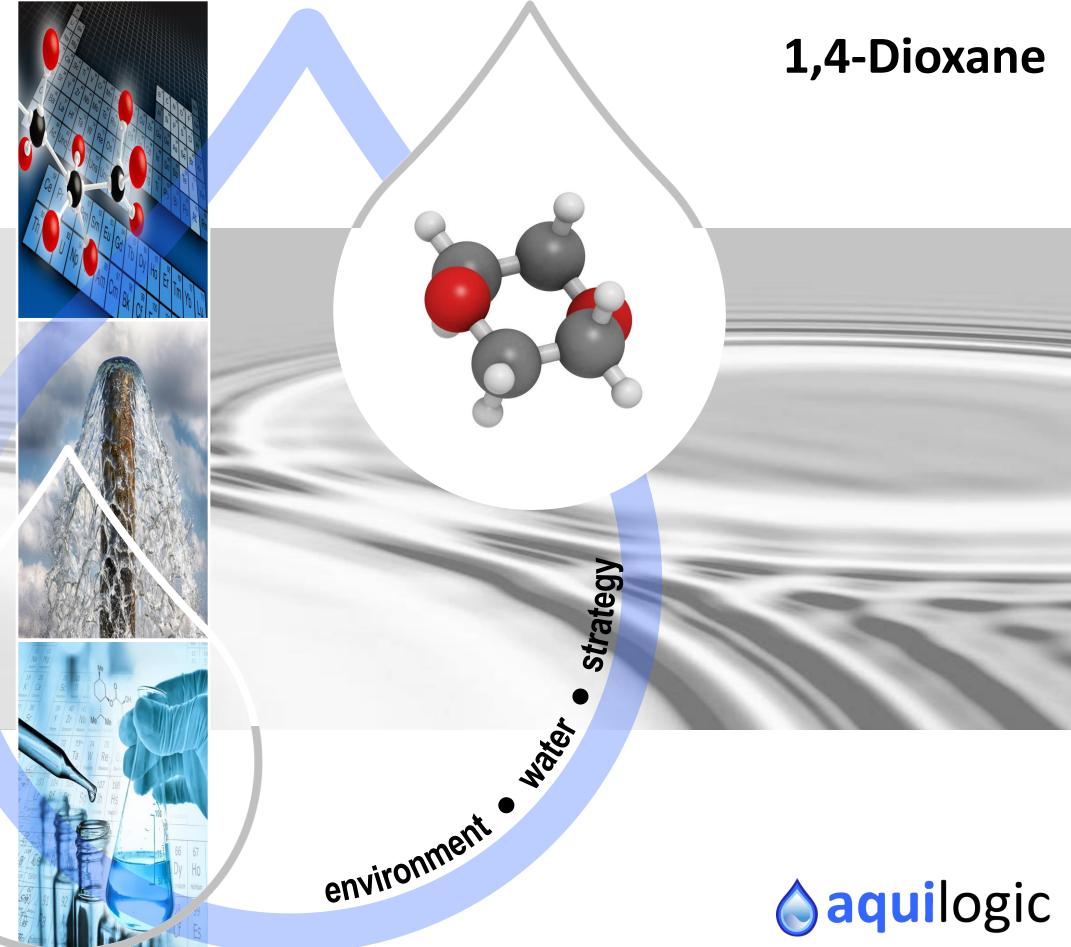
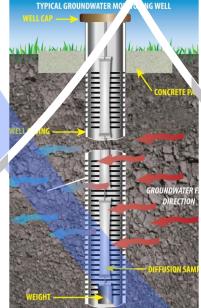


info@aquilogic.com Email: Telephone: +1.714.770.8040


The 1,4-Dioxane Experts

Responsible Party Identification GIS and Geomatics Contaminant Hydrogeology Fate and Transport Modeling **Risk Assessment Remediation Feasibility Studies** Soil and Groundwater Remediation Natural Resource Damage Assessment Water Resources Assessment Source Water Assessment and Protection Drinking Water Treatment **Environmental Risk Management** Litigation Support/Expert Witness Forensic Engineering Stakeholder/Public Participation **Regulatory Strategy**



To contact us, or sign up for our newsletter, please scan here.

www.aquilogic.com

uilogi

1,4-Dioxane Properties

Molecular Weight	Density	Solubility	Henry's Law Constant K _h	Octanol-Water Partition Coefficient (log K _{ow})	log K _{oc}
g	g/cm³ at 20°C	mg/l at 25°C	kPa m ³ /mol at 25°C	unitless	unitless
88.10	1.034 ¹	Miscible ¹	4.94 x 10 ^{-4²}	-0.27 ²	1.23 ³

Composition of 1,1,1-TCA From Various Manufacturers⁴

Compound	Fischer	Vulcan	J.T. Baker	PPG	Unocal Chemical	Occidental Chemical	GW Chemical
1,1,1-TCA	95%	> 95%	96 - 100%	95%	96 - 98%	96 - 97.5%	95%
1,4-dioxane	~5%		< 3%		0 - 4%	2 - 2.7%	0%
Nitromethane						0.2 - 0.5%	
1,2-butylene oxide		< 0.5%	< 0.5%				
sec-butanol				< 2%			1 - 2%
1,3-dioxolane		< 3%		< 2%			2%

Affected California Drinking Water Sources and Systems⁵

County	Number of Sources	Number of Systems	Maximum Detected Concentration (µg/L)
Los Angeles	52	20	28
Monterey	1	1	3.9
Orange	24	13	27
Sacramento	2	1	1.1
TOTAL	79	35	-

Regulatory Levels

Criteria	Concentration
Risk based Soil Screening Level for Protection of Groundwater (ug/kg) ⁶	0.14 ug/kg
Response Level (CA)	35 ug/l
Notification Level (CA)	1 ug/l

Notes to Tables:

- Riddick JA, Bunger WB, Sakano TK. 1986. 1,4-Dioxane. In: Organic 1. solvents. Physical properties and methods of purification. New York, NY: John Wiley & Sons, 312, 938.
- 2. Howard JA, Ingold KU. 1969. Absolute rate constants for hydrocarbon autoxidation XVII. The oxidation of some cyclic ethers. Can J Chem.
- 3. Lyman WJ, Reehl WF, Rosenblatt DH. 1982. Handbook of chemical property estimation methods:
- Environmental behavior of organic compounds. New York: McGraw-4. Hill Book Company, 9-64.
- Santa Clara Valley Water District. 2001. 1,4-Dioxane and other Solvent 5. Stabilizers. June 14.
- 6. California Department of Public Health as of November 2011.
- 7. USGS. (2006). Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Groundwater – A Review of Selected Literature. Open-File Report 2006-1338.
- CDPH. (2011). MCLs, DLRs, and PHGs for Regulated Drinking Water Contaminants. July 27.

In the U.S., approximately 10 million pounds (lbs) of 1,4-Dioxane are produced per year. When released into the air, 1,4-Dioxane degrades relatively quickly through reactions with photochemically-produced hydroxyl radicals. However, degradation in water and soil is slow. For this reason, 1,4-Dioxane is persistent in the environment, and will remain present in areas of groundwater contamination.

● environment ● water ● strategy ● environment ● water ● strategy § **nment** • water • strategy • environment • water • strategy

Understanding 1,4-Dioxane

1,4-Dioxane is a semi-volatile, colorless liquid with a mild ethereal odor, also known as diethylene dioxide, dioxane, or p-dioxane. It is miscible with water, oils and most chlorinated solvents. It is also flammable and, during storage, may form explosive peroxides.

Sources

1,4-Dioxane is primarily used as a stabilizer in chlorinated solvents. At one time, approximately 90% of the 1,4-Dioxane produced went into the production of 1,1,1-trichloroethane (TCA). This application has now been phased out due to TCA's destructive effects on atmospheric ozone. Industries or processes in which 1,4-Dioxane is used, or is associated, include:

- Chlorinated solvents manufacturing (as a stabilizer) Organic chemical manufacturing
- Textile processing
- Paper manufacturing
- Varnish stripper and paint production
- Pesticide production

Releases to the Environment